				神戸市立工業局寺専門子校 2010年度ンプバス 	
	科目	熱機関論 (Theory of Heat Engine)			
担当教員		橋本 英樹 准教授			
対象学年等		機械システム工学専攻・1年・後期・選択・2単位			
学習·教育目標		A4-AM2(100%)			
授業の 概要と方針		熱エネルギーを動力に変換する熱機関に関して,熱力学の基礎事項を理解し,理論サイクルとの関係ならびに性能に関する物理・化学過程について理解を深める.理解を深めるため毎回演習をおこなう.工業英語によるコミュニケーション基礎能力をつけるため,配布プリントは英文とする.			
		到 達 目 標	達成度	到達目標別の評価方法と基準	
1	【A4-AM2】熱 等)を理解して	A工学の基本事項(熱力学法則・エンタルピー・エントロピー こ、その応用技術について考察できる思考力をつける.		熱工学の基本事項およびその応用技術を理解して、考察できる思考力をつけているか小テスト・中間・定期試験とレポートから評価する.	
2	【A4-AM2】熱機関の種類による熱エネルギーの変換技術を理解する.			熱エネルギーの変換技術(各種熱サイクル)を理解しているかを,小テスト・中間・定期試験とレポートから評価する.	
3	【A4-AM2】熱機関内で起こりうる気体流動現象を熱力学の理論から導き ,現象を理解する.			熱機関内での気体流動現象を理解しているかを.小テスト・中間・定期試験と レポートから評価する.	
4	[A4-AM2]熱機関における気体流動現象での化学的・物理的過程の理解する.			気体流動の分子運動および化学反応を理解しているかを小テスト・中間・定 期試験とレポートから評価する.	
5					
6					
7					
8					
9					
10					
総合評価		成績は,試験85% レポート5% 小テスト10% として評価する.100点満点で60点以上を合格とする.			
テキスト		「熱力学」:高城他(大阪大学出版会)プリント(英文)			
参考書		「THERMO-DYNAMICS」: J. F. Lee and F. W. Sears (Addison-Wesley)			
関連科目		工業熱力学,エネルギー変換工学,熱・物質移動論,流体工学			
履修上の 注意事項		4・5年での工業熱力学及びエネルギ変換工学を基礎に,熱力学を理解して,熱機関でのサイクル論および気体流動現象を理解する.なお,工業英語のコミュニケーション基礎能力をつけるため,小テスト・中間試験・定期試験の問題は主に英語で出題する.			

	授業計画(熱機関論)				
	テーマ	内容(目標・準備など)			
1	熱力学の基礎事項	流れ(flow)・圧力(pressure)・温度(temperature)と状態量(properties)・熱平衡(thermodynamics equilibrium) 相変化 (phase change)の理解			
2	熱力学第1法則	熱力学第1法則(The first law of thermodynamics)熱(heat)と仕事(work)の関係			
3	理想気体の状態式	理想気体の状態式(equation of state for ideal gas)・状態変化(change of states)と気体の分子運動論(kinetic theory of gas)の関係			
4	熱力学第2法則	熱力学第2法則(The second law of themodynamics)とエントロピ(entropy)の関係とカルノーサイクル(Carnot cycle)の理解			
5	蒸気の性質・状態変化とエクセルギー	エクセルギー(exergy)の定義,蒸気の性質(characteristics of steam)・状態変化(change of states)と有効エネルギー(avalable energy)の理解			
6	燃焼と蒸気原動所サイクルシステム	反応(combustion reaction)とランキンサイクル(Vapor Power Cycle System (Rankine cycle))の関連			
7	中間試験	熱力学に関する基礎知識の理解度を調べる.			
8	中間試験解答	上記中間試験までの熱力学に関する基礎知識を理解する.			
9	ガス動力サイクル(1)	内燃機関のサイクル論(Analysis of Internal Combustion Engine Process)オットーサイクル(Otto cycle)の理解			
10	ガス動力サイクル(2)	ディーゼルサイクル(Internal Combustion Engine Process(Diesel cycle))の理解			
11	ガス動力サイクル(3)	ガスターピンサイクル(Gas turbine Cycle(Brayton cycle))の理解			
12	冷凍サイクル	冷凍機プロセスと熱システム(Refrigeration Process)の理解			
13	熱機関内での気体流動現象(1)	流体の動力学(Dynamics of fluid flow)と流体の特性(Characteristics of fluid flow)関連			
14	熱機関内での気体流動現象(2)	音速(Sonic velocity・超音速(Super sonic)とマッハ数(Mach number)の理解			
15	熱機関内での気体流動現象(3)	衝撃波(Shock Wave)の特性(property)及び現象(Phenomena)の理解			
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					
26					
27					
28					
29					
30					
	木利日の修得にけ 30 時間の授業の受講と60 時	目のもつ英辺だと悪なれて			

本科目の修得には,30 時間の授業の受講と 60 時間の自己学習が必要である。 後期中間試験および後期定期試験を実施する.毎回演習(小テスト)を行い,理解を含める.総括として熱機関に関するレポートの提出を期末試験 時までに求める.

備考